

Practical Applications of ADS-B and FDM in General Aviation

An Embry-Riddle Aeronautical University Perspective Professor Kenneth Byrnes

Agenda

- Why ADS-B?
- Example of Practical Application
- Future of ADS-B
- Flight Data Monitoring
- FDM Capabilities
- Conclusion

Why ADS-B? Airspace Limitations

- •20% of U.S. training occurs in our district
- •DAB 800 ops/day •27th busiest
- •3 Airports within top 10 busiest (pvt ATC)
- •ERAU schedules 300 flight activities daily
 - •70,000 hours/yr
 - •130,000 ops/yr
- Highest threat to our safety in a mid air collision
- •2 fatal mid-airs •'95 and '99

Bombing Range

No off shore operations

NASA

MCO Class B

ADS-B at ERAU

- Competitive fly off (2002 2003)
 - ADS-B
 - Traffic Information System (TIS)

ADS-B selected

- Non –Radar environment at the Prescott campus
- Real time position updates (no sweep delay)
- Maturity of the technology (Capstone)
- Availability of desktop management system
 - Comprehensive Real Time Analysis of Broadcast Systems (CRABS)
- Improved low altitude capability
 - Below 1,000 feet in the practice area in the pattern at remote airfields.
 - FIS-B (Weather)

2003, ERAU Equipped 100 aircraft

- Significant investment in safety
- Changed the nature of the pilots situational awareness

Installation

ERAU Piper Arrow-Seminole Panel

ERAU Diamond DA-42L360

ERAU Cessna Panel

 On the ground, operators can display traffic and weather information on computer screens

Practical ADS-B Uses

Airborne planning tool
Limited FOQA
Investigation
Research

Strategic

Collision Avoidance
Situational awareness
Below radar/On the ground
Controller to pilot
Pilot to pilot

Tactical

NMAC

- August 2008
- VFR traffic pattern
- High wing vs. Low wing

Future of ADS-B

- Will provided an unprecedented level of situational awareness for ATC, GA, and Air Carriers
- Great tool for management and investigators
- Overall: immeasurable increase in SAFETY

Best investment for lives saved

- ▶ C-172 round-dial: \$20,000 (est. 2003)
 - Includes MX-20 MFD
- ▶ C-172 G1000: \$7,000 (est. 2007)
 - Not pre-wired
- DA-42 G1000: \$6,000 (January 2009)
 - 32 hr. labor: \$1,450
 - GDL-90: \$4,590
 - Aircraft already pre-wired by factory

Flight Data Monitoring

G1000

- Data recorded to SD card in top card slot on MFD
- Recording rate is once per second
- Data is readable in Microsoft Excel and can be converted for 3-D viewing in Google Earth

Flight Data Logging 51 Parameters

- Date
- Time
- GPS altitude (MSL)
- GPS altitude (WGS84 datum)
- Baro-Corrected altitude (feet)
- Baro Correction (in/Hg)
- Indicated airspeed (kts)
- Vertical speed (fpm)
- GPS vertical speed (fpm)
- OAT (degrees C)
- True airspeed (knots)
- Pitch Attitude Angle (degrees)
- Roll Attitude Angle (degrees)
- Lateral and Vertical G Force (g)
- Ground Speed (kts)
- Ground Track (degrees magnetic)
- Latitude (degrees; geodetic; +North)
- Longitude (degrees; geodetic; +East)

- Magnetic Heading (degrees)
- HSI source
- Selected course
- Com1/Com2 frequency
- Nav1/Nav2 frequency
- CDI deflection
- VDI/GP/GS deflection
- Wind Direction (degrees)
- Wind Speed (knots)
- Active Waypoint Identifier
- Distance to next waypoint (nm)
- Bearing to next waypoint (degrees)
- Magnetic variation (degrees)
- Autopilot On/Off
- AFCS roll/pitch modes
- AFCS roll/pitch commands
- GPS fix
- · GPS horizontal alert limit
- · GPS vertical alert limit

- WAAS GPS horizontal protection level
- WAAS GPS vertical protection level
- Fuel Qty (right & left)(gals)
- Fuel Flow (gph)
- Fuel Pressure (psi)
- Voltage 1 and/or 2
- Amps 1 and/or 2
- Engine RPM
- Oil Pressure (psi)
- · Oil Temperature (deg. F)
- TIT (deg. F)
- Manifold Pressure (in. Hg)
- CHT
- EGT

6/22/2012

25

Reports vs. FDM Data

SAFETY REPORTS vs. RMS

Summer 2011

Benefits of FDM

- A tool for monitoring safety, quality, and professionalism
- Identify parameters that have been exceeded
- Incident/accident investigation
- Research/Procedure development
- Research/ health monitoring
- Maintenance issues
- Added value to training/de-breifing

EMBRY-RIDDLE Aeronautical University

"Safety-Quality-Professionalism" Professor Ken Byrnes